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Gkeyll Tokamak References

Gkeyll is apparently the first successful continuum gyrokinetic code doing turbulence on
open field lines, sheath boundary conditions & toroidal bad curvature (XGC, and recently
ELMFIRE, are only other codes, using a PIC approach. XGC can also do X-points).
COGENT making progress, has more advanced collision operator, 2D general geometry.
Essential to have independent codes to cross-check on difficult turbulence problems.

* LAPD-like case with straight field lines: E.L. Shi, G.W. Hammett, T. Stoltzfus-Dueck, A.
Hakim, J. Plasma Physics (2017) http:/dx.doi.org/10.1017/S002237781700037X

* First extension to a helical model of a tokamak SOL including bad-curvature drive, for

NSTX-type parameters:
» "Gyrokinetic Continuum Simulation of Turbulence in Open-Field-Line Plasmas",
Eric L. Shi, Ph.D. Dissertation, Princeton U., (Arxiv, 2017). https:/arxiv.org/abs/1708.07283
« “Full-f gyrokinetic simulation of turbulence in a helical open-field-line plasma”
E.L. Shi et al., Phys. Plasmas 26, 012307 (2019) https://doi.org/10.1063/1.5074179

* Key papers (so far) on DG algorithms in Gkeyll:

« J.Juno, A. Hakim, et al., J. Comp. Phys. (2018) nhttps://doi.ora/10.1016/.jcp.2017.10.009
 A. Hakim, M. Francisquez et al., 2019, “Conservative Discontinuous Galerkin Schemes for

Nonlinear Fokker-Planck Collision Operators” https:/arxiv.org/abs/1903.08062

Collaborated with Q. Pan, et al., extended GENE to full-F for SOL and LAPD-like straight fields : Q.

Pan, D. Told, E. Shi, G. Hammett, F. Jenko (PoP 2018)
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Gkeyll using novel algorithms, has multiple spinoffs

Novel version of Discontinuous Galerkin algorithm, conserves energy for
Hamiltonian system even with upwinding. High-order algorithms that reduce

communication costs helpful for Exascale computers.
4 Main Versions / spinoffs (consolidating kinetic versions some):

« Gyrokinetic DG version for edge turbulence in fusion

NSTX: E. Shi et al. Phys. Plasmas (2019), Helimak: T.N. Bernard et al. Phys. Plasmas (2019), LAPD
results: E. Shi,et al. J. Plasma Physics (2017), Shi Ph.D. 2017 (arxiv)

* Vlasov/Poisson DG version for plasma thrusters (AFOSR/Virginia Tech)
Cagas et al. Phys. Plasmas (2017)

» Vlasov/Maxwell DG version for solar wind turbulence (U. Maryland, NSF)

J. TenBarge, Sherwood Inv. Talk (2017), J. Juno et al., JCP 2018,
Shocks in Laser-Plasma Interaction: Pusztai et al., (2018), Sundstrom (JPP 2019)

* Multi-moment multi-fluid (~extended MHD) finite-volume version, studying

magnetospheres and reconnection (Princeton Center for Heliophysics).
C. Dong et al. 2019 nttps://arxiv.org/abs/1904.02695 , J. Ng PoP 2015, L. Wang PoP 2015
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Edge region very difficult
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Present core gyrokinetic codes are highly optimized for core, need new codes to handle
additional complications of edge region of tokamaks (& stellarators):

open & closed field lines, plasma-wall-interactions, large amplitude fluctuations, (positivity
constraints, non-Maxwellian full-F), atomic physics, non-axisymmetric RMP / stellarator coils,
magnetic fluctuations near beta limit, stable sheath model...

Hard problem: but success of core gyrokinetic codes and progress of XGC PIC code makes me

believe this is tractable, with a major initiative :



Gkeyll: First Continuum 5D Gyrokinetic Simulations of
Turbulence in SOL with sheath model boundary conditions

Edge region has been
computationally very
difficult.

Various simplifications at present, such as helical model of SOL (toroidal + vertical B field).
XGC is only gyrokinetic turbulence code that can handle separatrix at present.

E. Shi Ph.D. 2017 LAPD: E. Shi, A. Hakim, T. Stolzfus-Dueck, J. Plasma Physics (2017)
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Gkeyll: First Continuum 5D Gyrokinetic Simulations of
Turbulence in SOL with sheath model boundary conditions

Edge region has been
computationally very

Various simplifications at present, such as helical model of SOL (toroidal + vertical B field).
XGC is only gyrokinetic turbulence code that can handle separatrix at present.
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Gkeyll: First Continuum 5D Gyrokinetic Simulations of

Turbulence in SOL with sheath model boundary conditions
t = 0.1335 ms
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Various simplifications at present, such as helical model of SOL (toroidal + vertical B field).
XGC is only gyrokinetic turbulence code that can handle separatrix at present.
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Toroidal case (left) vs. Slab case (right)
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Clearly shows bad curvature enhances instability drive

E. Shi (Ph.D. 2017)



Divertor heat flux broadens ~ theta ~ 1/B_pol
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E. Shi (Ph.D. 2017)
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(Present simulation neglects magnetic shear and related stabilization near x-point, shortened
parallel length to divertor plates to approximately compensate.)

12



Larger amplitude & more intermittent blobs in far SOL
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Figure 5.13: Electron density fluctuation statistics (top row) and potential fluctuation
statistics (bottom row) computed near the z = 0 m plane for three cases with different
magnetic field line incidence angle #. The potential fluctuations are notably less
intermittent than the density fluctuations. The shaded area indicates the region in
which the source is concentrated.

E. Shi (Ph.D. 2017)
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Discontinuous Galerkin
Algorithms

and modifications to ensure
positivity of solution

(density of particles, energy, etc. should be
non-negative,
otherwise may cause numerical problems
with sheaths, collision operator, ...)
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Discontinuous Galerkin (DG) Combines Attractive
Features of Finite-Volume & Finite Element Methods
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Don’t get hung up on the word “discontinuous”. Simplest DG is piecewise constant:
equivalent to standard finite volume methods that evolve just cell averaged quantities.
Can reconstruct smooth interpolations between adjacent cells when needed.

Need at least piecewise linear DG for energy conservation (conserves energy even
with upwinding). Standard Finite Volume methods do not conserve energy exactly for
Vlasov-type problems (except Arakawa method, which can have artificial oscillations).
Unlike Navier-Stokes fluid egs., energy conservation in kinetic/VIasov-Boltzmann
equations is indirect, involving integration-by-parts and particle-field energy exchange.



Simple Example of the DG algorithm

The standard form of the Discontinuous Galerkin (DG) algorithm, illustrated on the
simple passive advection problem:

0f(x,t) af

= —UV—

ot ox

Within each cell (normalized to z € [—1,1]), expand with piecewise-linear functions:

Zf] ()"‘fl()

Require that the error projected onto the space of basis functions in each cell vanish, and
integrate by parts to remove derivative on f:
Tji1)2 0b ;
J o / ob; f
Lj—-1/2

of of ;
/dazb i g = /dazb v%——vbj(a:)f(x)
Define a unique (upwind) value at the boundary, f (j41/2). Using linear basis set:
dfo/dt = —v(f(Tj41/2) = f(Tj-1/2))/ Az

dfl/t = —30($j+1/2f<$j+1/2) — Qf]_/Qf(ZEj_l/Q))/AQT + GUfO/AZE

A

and use an upwind flux, f(z;41/2) = fo + f1 for the j'th cell.
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Standard DG on a simple advection problem
works well for smooth initial conditions.

2.5

Flux = "ident", red/black=init/final
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Solution of

0,
ot ox

with periodic boundary

1 conditions. After 1

period, the solution
(black) overlays the
initial condition (red)
very well.

(N, =32 cells)
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Standard DG approximately ok on discontinuous
case, but negative overshoots bad for plasma
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Small negative
overshoots not a big deal
for some applications,
but might cause serious
problems for other
applications. Negative
mass densities, or even
just negative f in part of
phase space, might cause
various problems in
plasmas, or in their
interaction with sheath
boundary conditions.

(Dots indicate f, in cells

1.0 with mean f;<0.)
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First place where f goes <0 is leading edge,
Here is algorithm sequence for 1st step

1.2 Flux = "ident", red/black=init/final
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First place where f goes <0 is leading edge,
Here is solution after 1 time step

Flux = "ident", red/black=init/final
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First place where f goes <0 is leading edge,
Here is solution after 1 time step
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First place where f goes <0 is leading edge,
Here is solution after 1 time step

Flux = "ident", red/black=init/final
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First place where f goes <0 is leading edge,
Here is solution after 1 time step
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To avoid negative f going into a cell, restrict
extrapolation to cell boundary f, >= 0. BAD!

Flux = "pos", red/black=init/final Get unphysical result!
! ? ? ! The mean f still goes
(slightly) negative in
some cells. But worse is
‘ that slopes go wild, get

: / very large. Slopes are so

/ steep that there is no
i realizable f(x) that has
' ' the same moments and
remains positive.

2.0
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If you first observe this in
a 5D code, give up for a
while because it’s hard
to diagnose and just use
. . . . the older method that
—0.5 i i i | was more diffusive.
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Also enforcing extrapolation f; < f,/ (vVAt/AXx)
ensures avg f, > 0, but slopes still unphysical

1.2 Flux = "pos2", red/black=init/final
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How can slopes get so large?
(Have to *enhance* the flux, not limit it.)

How can the slope become unphysically too large? Consider the simple case of a cell
with nothing flowing into it (f;_1,2 = 0), and solve the equations only for the outflow. Then
can show

dfo/dt = —vfji1/2/Ax
df1/t = —=3vfjt1/2/Ax + 6vfo/Ax
Differentiating * = f1/(3fo) then gives:

dz Jjr12
E‘“(Q_(l_‘”) N )

As T approaches 1, T will continue to grow and will exceed the physical limit, unless f;11/2
is enhanced over a linear extrapolation. This is different than most limiters, which would
reduce the extrapolation.
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Linear reconstruction with f; (x)<0 some
places not necessarily bad, a realizable f(x)
can exist that has the same moments.

fi .
o) —

-1
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X

In our earlier work, we were
overly restrictive and
required

fi(x)=f_0+f_1x>0
for all x in the cell. But even
if f,,(x) <0 in some places,

there can be an equivalent
exponential reconstruction

f(x) = c exp( beta x)

with the same moments but
that is >0 everywhere.

However, this works only as long as <x>=f_1 /(3 f_0) lies within the range -1 < <x> < 1.
If the slope to mean ratio is too large, |f _1|/f 0> 3, then there is no non-negative f(x)

with the right moments.
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DG with exponential reconstruction
completely fixes f<0 problems.

Flux = "exp6", red/black=init/final

1.2

Overshoots away from
1f=0 can also be improved
in the future, using DG
{variants of the Suresh-
Huynh monotonicity-

| preserving limiters (JCP
1997), perhaps with a
weaker “essentially non-
|oscillatory” goal instead
of a strict monotonicity-
1preserving requirement.
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DG with exponential reconstruction continues
to work well for smooth solutions.

Flux = "exp6", red/black=init/final
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Implementing exponential reconstruction in DG

To implement exponential reconstruc-
tions in this conservative DG form, the
only modification to the DG algorithm is
in the extrapolation to the boundary terms.
I.e., one advances the same set of moment

equations in time:
Tjt1/2 ob;
’ +U/dx —Lf
ZCj_l/Q 8:6

of NP
/dxbj 5 = Y bi(z)f(x)

But now the extrapolation to the bound-
ary, f(xj41/2) is based on an exponential
function

2p
exp(f) — exp(—p)

that reproduces the given moments fy =
(f) and f; = (xf(x)), where § is a func-
tion of T = f1/(3f0)

f(x) = fo exp(fz)
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